
60 The Delphi Magazine Issue 27

Edited by Mike Orriss. Please send your
Tips direct to Mike at mjo@compuserve.com

Win32 API error codes
When making calls to Win32 API functions, most of
them return an error code or set GetLastError should
they fail. The error code returned is a 32 bit value. The
error text associated with this 32 bit value can be
found by a call to FormatMessage as shown below. The
function below could added to your units or forms and
used as follows:

errorSt:=GetLastErrorText(GetLastError);

Note the DWORD type is defined within Windows.pas as
an integer (Listing 1).

Contributed by Andy McFarlane, andymac@clara.net

Two ‘Gotchas’
I came across a couple of things that stumped me for an
hour or so, and I thought they might be useful ‘tips’ for
others. I wanted to use the Windows API call:

SetParent(child: HWnd; NewParent: HWnd)

but the compiler kept thinking I wanted to use the TCon-
trol method procedure:

SetParent(AParent: TWinControl); virtual;

The way to specify the Windows one is (sensibly
enough) to refer to it as Windows.SetParent.

I was trying to use the EnumChildWindows procedure,
but kept getting weird results to my callback function.

It turned out (of course) to be that the definition of the
callback I was using:

function EnumChildProc(childwnd : HWnd;
lParam : LPARAM): Bool;

was incorrect. It needs to be:

function EnumChildProc(childwnd : HWnd;
lParam : LPARAM): Bool; Stdcall;

so that the parameters get passed correctly. Yes, it
says it plainly in the help file, but it’s easy enough to
forget.

Contributed by Mat Newman, Mat@and.co.uk

Update: Starting Projects Via DPR
As an alternative to Mark Erbaugh’s suggestion to
create a shortcut for every Delphi 1.0 project on a
machine supporting multiple versions of Delphi (Issue
26), you could try this.

Open any Explorer window, go to View|Options and
select the File Types tab. Select the Delphi Project File
item and click Edit, then New, and enter Open with Delphi
1.0 in the Action text box. Then navigate to your 16-bit
Delphi executable (usually, this is C:\DELPHI\BIN\
DELPHI.EXE) and click OK.

This will have the effect of adding an extra item to
the Windows 95 right-click menu for any DPR file. The
process can also be repeated for Delphi 2’s executable
should you have Delphi 3 installed.

Contributed by Russ Garner,
rgarner@ondemand.co.uk

Update: Navigation
With Cursor Keys (Issue 26)
It’s true that there is no WM_PREVDLGCTL message, but
one isn’t needed as the first parameter (wCtlFocus) indi-
cates if you want the NEXT control (value=0) or the PRE-
VIOUS one (value=1).

Contributed by Lucas Franzen, luc@twc.de

Const Parameters
I am indebted to Mike Scott (mikes@compuserve.com)
for the idea for this tip (which resulted from a pub con-
versation).

In Delphi 1 we all got used to passing string parame-
ters as Const since it was more efficient to pass a
pointer on the stack rather than the string itself. With
Delphi 2 and 3 and the new string support, the strings
are already passed as pointers so this reason is no
longer valid. However, using Const is still more efficient
since it prevents unnecessary reference counting.
Mike has discovered (although it does not appear to be
documented anywhere) that the same holds true when
passing Interfaces as parameters.

Contributed by Mike Orriss, mjo@compuserve.com

function TForm1.GetLastErrorText(dwError:DWORD):string;
const
MAX_MSG_SIZE = 256;

var
szMsgBuf:array[0..MAX_MSG_SIZE-1] of char;

function MakeLangID(p, s:DWORD):DWORD;
begin
result:= ((WORD(s) shl 10) or word(p));

end; {MakeLangID}
begin
if FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nil,
dwError, MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US),
szMsgBuf, MAX_MSG_SIZE,nil) = 0 then begin
result:=Format('Error %d',[dwError]);

end else begin
result:=szMsgBuf;

end;
end; {GetLastErrorText}

➤ Listing 1

November 1997 The Delphi Magazine 61

Colours Property Editor
Listing 2 demonstrates how to add colour values to
your system. Once registered, the additional values
clSproog etc will be available for all TColor properties.

Contributed by Mike Scott, mikes@compuserve.com

FilteredComponent Property Editor
This is a property editor that shows how to have a
custom property of the same type as the component
itself, but not list the component in its own property
dropdown list, ie so that the component can’t refer to
itself (Listing 3). Note the use of the abstract base class
to work around a bug in Delphi 2.

Contributed by Mike Scott, mikes@compuserve.com

DbiDoRestructure Wrapper
This tip implements a wrapper around the Borland
Database Engine’s DbiDoRestructure function, which
allows restructuring of non-SQL tables. However, why
should we spend our time in understanding how to use
that obscure routine when the Database Desktop does
the job for us?

I’ve found a good reason for this during the develop-
ment of my last project: I wanted the user to be able to
modify at runtime the structure of a Paradox table,
adding, deleting, renaming or moving fields. I could use
the ALTER TABLE SQL statement in order to add and

unit FilteredComponentProperty;
interface
uses Classes, DsgnIntf ;
type
TTestCompAbs = class(TComponent) ;
TTestComp = class(TTestCompAbs)
private
FParentComp : TTestCompAbs ;

published
property ParentComp : TTestCompAbs read FParentComp
write FParentComp ;

end ;
TFilteredComponentProperty = class(TComponentProperty)
private
FInheritedProc : TGetStrProc ;
procedure OurProc(const s : string) ;
function IsOurName(const s : string) : boolean ;

protected
procedure GetValues(Proc : TGetStrProc); override;

end;
procedure Register;
implementation
function TFilteredComponentProperty.IsOurName(
const s : string): boolean;

var i : integer;
begin
Result := true ;
for i := 0 to PropCount-1 do
if s = (GetComponent(i) as TComponent).Name then exit;

Result := false ;
end ;
procedure TFilteredComponentProperty.OurProc(
const s : string);
begin
// only pass on if value is not our own name
if not IsOurName(s) then FInheritedProc(s);

end ;
procedure TFilteredComponentProperty.GetValues(
Proc : TGetStrProc);

begin
FInheritedProc := Proc;
inherited GetValues(OurProc);

end;
procedure Register;
begin
RegisterComponents('Samples', [TTestComp]);
RegisterPropertyEditor(TypeInfo(TTestCompAbs),
TTestCompAbs, '', TFilteredComponentProperty);

end;

➤ Right: Listing 3➤ Below: Listing 2

unit CustomColours;
interface
uses
SysUtils, Classes, Graphics, DsgnIntf ;

const
clSproog = $00234567 ;
clFangle = $00765432 ;
clRelmist = $00767676 ;
clPogarth = $0012AA21 ;
Colors : array[0..3] of integer =
(clSproog, clFangle, clRelmist, clPogarth);

ColorStrings : array[Low(Colors)..High(Colors)] of string
= ('clSproog', 'clFangle', 'clRelmist', 'clPogarth');

type
TMyColorProperty = class(TColorProperty)
protected
function GetValue : string ; override ;
procedure GetValues(Proc : TGetStrProc) ; override ;
procedure SetValue(const Value : string) ; override ;

end ;
// replacements for color functions in Graphics.pas
function ColorToString(Color : TColor) : string ;
function StringToColor(const S : string) : TColor ;
function ColorToIdent(Color : longint; var Ident : string) :
boolean;

function IdentToColor(const Ident : string;
var Color : longint) : Boolean;

procedure Register;
implementation
function ColorToIdent(Color : longint; var Ident : string) :
boolean;

var i : integer ;
begin
for i := Low(Colors) to High(Colors) do
if Color = Colors[i] then begin
Ident := ColorStrings[i] ;
Result := true ;
exit ;

end ;
Result := Graphics.ColorToIdent(Color, Ident) ;

end;
function IdentToColor(const Ident : string;
var Color : longint) : Boolean;

var i : integer;
begin
for i := Low(ColorStrings) to High(ColorStrings) do
if AnsiCompareText(Ident,ColorStrings[i]) = 0 then begin

Color := Colors[i];
Result := true ;
exit ;

end ;
Result := Graphics.IdentToColor(Ident, Color) ;

end ;
function ColorToString(Color : TColor) : string;
begin
if not ColorToIdent(Color, Result) then
FmtStr(Result, '$%.8x', [Color]);

end;
function StringToColor(const S : string) : TColor ;
begin
if not IdentToColor(S, Longint(Result)) then
Result := TColor(StrToInt(S)) ;

end;
function TMyColorProperty.GetValue : string ;
begin
Result := ColorToString(TColor(GetOrdValue)) ;

end;
procedure TMyColorProperty.GetValues(Proc : TGetStrProc);
var
i : integer ;

begin
// add our colours first, call inherited first to have
// our colours at the end of the list
for i := Low(ColorStrings) to High(ColorStrings) do
Proc(ColorStrings[i]) ;

inherited GetValues(Proc) ;
end ;
procedure TMyColorProperty.SetValue(const Value : string);
var
ColorValue : longint ;
i : integer ;

begin
if IdentToColor(Value, ColorValue) then
SetOrdValue(ColorValue)

else
inherited SetValue(Value) ;

end;
procedure Register ;
begin
RegisterPropertyEditor(
TypeInfo(TColor), NIL, '', TMyColorProperty);

end;
end.

62 The Delphi Magazine Issue 27

drop fields, but what about the remaining operations? I
had no choice, I had to deal with the DbiDoRestructure
function. Unfortunately, the documentation about that
routine is quite poor: apart from the BDE Api help, I
found only an example of use in Mike Orriss’ DTopics
archive. So, I had to do some experimentation myself.

The DbiDoRestructure function takes several parame-
ters, as you can see examinating the DbiProcs.int file in
Delphi 1 or the BDE API Help in Delphi 2; however only a
few are necessary for my purpose, so I set the hDb
parameter to my table’s database handle,
iTblDescCount to 1 (can’t be otherwise), bAnalyzeOnly to
False (I want to effectively restructure the table), and
pszSaveAs, pszKeyViolName and pszProblemsName to NIL
(I’m not interested for now).

The remaining parameter is the problematic one.
The pTblDesc variable,of type pCRTblDesc, is a pointer to
a complex record which holds the complete descrip-
tion of the table’s structure. However, because I’m not
interested in indexing, setting referential integrity,

validation checks, etc, I can concentrate on only a few
of the record fields: szTblName and szTblType (the
table’s name and driver type respectively), bPack
(whether we want to pack the table also or not), iFld-
Count (the number of field descriptors I must provide),
pFldDesc (the array of field descriptors) and pecrFldOp
(array of crOpType structure, defining for each field the
type of operation performed: add,modify, etc).

Most of the unit’s code is devoted to the aim of prop-
erly filling these arrays, before calling the DbiDoR-
estructure function. First of all, the unit defines the
enumerated type TResOp, which corresponds to the
BDE crOpType, simply changing the cr prefix to res (eg
crAdd becomes resAdd), to avoid conflicts. The crCopy
operation is not used in the unit (frankly I don’t under-
stand it), I added instead a resMove constant to my
TResOp type, that can be specified to change the posi-
tion of a field in the table.

The Restructure procedure does the job of modifing
the table structure. It takes several parameters, but
only the first three are needed for all the restructuring
operations: the table to restructure, the operation

➤ Listing 4

unit DBRestr;
interface
uses
DB,DBTables,
{$IFDEF Win32} Bde {$ELSE} DbiTypes, DbiProcs {$ENDIF};

type
TResOp = (resADD,resDROP,resMODIFY,resMOVE);
procedure Restructure(ATable:TTable; OpType: TResOp;
FNum, FDest: integer; FName: string; FType: TFieldType;
FSize: word);

implementation
uses
SysUtils,
{$IFDEF Win32}DBRUtl32 {$ELSE}DBRUtl16 {$ENDIF};

procedure Restructure(ATable:TTable; OpType: TResOP;
FNum,FDest: integer; FName: string; FType: TFieldType;
FSize: word);

type
TFldArr = array[1..1000] of FldDesc;
TOpArr = array[1..1000] of CROpType;

var
hDb: hDbiDb;
TblDesc: CRTblDesc;
Dir:array[0..255] of char;
pFldArr : ^TFldArr;
pOpArr : ^TOpArr;
FldCount,NewCount,j : integer;
SaveActive: boolean;
FDesc: FldDesc;
Props: CURPROPS;
TableTypeName : PChar;

begin
with ATable do begin
if Database.IsSqlBased then
raise Exception.Create(
'Cannot restructure SQL tables');

SaveActive:=Active;
if not Active then Active := true;

end;
TableTypeName := GetTableTypeName(ATable);
Check(DbiGetDirectory(ATable.DBHandle, False, Dir));
Check(DbiGetCursorProps(ATable.Handle, Props));
FldCount := Props.iFields;
if OpType = resAdd then
NewCount := FldCount+1

else
NewCount := FldCount;

if NewCount =0 then exit;
pFldArr := AllocMem(NewCount * SizeOf(FLDDesc));
pOpArr := AllocMem(NewCount * SizeOf(CROpType));
Check(DbiGetFieldDescs(ATable.Handle, @pfldArr^[1]));
try
FillChar(TblDesc, sizeof(CRTblDesc), #0);
TblDesc.bPack := True;
case OpType of
resModify :
begin
TblDesc.iFldCount := FldCount;
with pFldArr^[FNum+1] do
AnsiToNative(ATable.Locale, FName, szName,
SizeOf(szName) - 1);

pOpArr^[FNum+1]:=crModify;
for j:=1 to TblDesc.iFldCount do

pFldArr^[j].iFldNum := j;
end;

resAdd:
begin
TblDesc.iFldCount := FldCount+1;
if FNum < FldCount then
System.Move(pFldArr^[FNum+1],pFldArr^[FNum+2],
(FldCount-FNum)*Sizeof(FldDesc));

MapField(ATable, pFldArr^[FNum+1], FName,
FType, FSize);

pOpArr^[FNum+1]:=crAdd;
for j:=1 to FNum do
pFldArr^[j].iFldNum := j;

if FNum < FldCount then
for j:=FNum+2 to FldCount+1 do
pFldArr^[j].iFldNum := j-1;

end;
resDrop:
begin
TblDesc.iFldCount := FldCount-1;
if FNum < FldCount-1 then
System.Move(pFldArr^[FNum+2],pFldArr^[FNum+1],
(FldCount-FNum-1)*Sizeof(FldDesc));

for j:=1 to FNum do
pFldArr^[j].iFldNum := j;

for j:=FNum+1 to FldCount-1 do
pFldArr^[j].iFldNum := j+1;

end;
resMove:
begin
TblDesc.iFldCount := FldCount;
for j:=1 to TblDesc.iFldCount do
pFldArr^[j].iFldNum := j;

FDesc := pFldArr^[FNum+1];
if FDest > FNum then
System.Move(pFldArr^[FNum+2],pFldArr^[FNum+1],
(FDest-FNum)*Sizeof(FldDesc))

else
System.Move(pFldArr^[FDest+1],pFldArr^[FDest+2],
(FNum-FDest)*Sizeof(FldDesc));

pFldArr^[FDest+1]:=FDesc;
end;

end;
ATable.Close;
Check(DbiOpenDatabase(nil, nil, dbiReadWrite,
dbiOpenExcl, nil, 0, nil, nil, hDb));

Check(DbiSetDirectory(hDb, Dir));
TblDesc.pFldDesc := @pFldArr^[1];
TblDesc.pecrFldOp := @pOpArr^[1];
if TableTypeName <> nil then
StrCopy(TblDesc.szTblType, TableTypeName);

StrPCopy(TblDesc.szTblName, ATable.TableName);
Check(DbiDoRestructure(hDb, 1, @TblDesc, nil, nil, nil,
False));

finally
Check(DbiCloseDatabase(hDb));
FreeMem(pFldArr, NewCount * SizeOf(FLDDesc));
FreeMem(pOpArr, NewCount * SizeOf(CROpType));
if SaveActive then
ATable.Open;

end;
end;
end.

November 1997 The Delphi Magazine 63

requested and the field number. To handle more easily
the pFldDesc and pecrFldOp arrays, the procedure
declares two Pascal style array types: TFldArr and
TOpArr and two variables pointing to these types
respectively: pFldArr and pOpArr.

After allocating the two array variables, I retrieve the
original field descriptors in pFldArr, using the DbiGet-
FieldDescs API, then set to True the bpack parameter
(it’s a personal choice, of course) and then go into the
case statement to select the proper operation.

If I must modify the name of the field (resModify)
simply set the new name via the AnsiToNative proce-
dure. Notice that I add one to the FNum parameter,
because for Delphi the first field is zero, while for the
BDE it is one. Adding a field is more complex: first, I
must increase by one the Table Descriptor’s iFieldNum
field. Then, if the field is not appended to the end, I shift
the field descriptors to make room for the new field.
The MapField function [Taken from the DbUtl16 /
DbUtl32 units, whose code resembles too closely the Bor-
land code to make it public, note: these compiled units
are for Delphi 1 and Delphi 2 only, Mike Orriss] retrieves
the correct field descriptor for the new field and finally
I reorder the iFldNum field of the field descriptors. In the
remaining cases, analogous actions are performed, so
the source code inspection should suffice to under-
stand.

The Restructure procedure then closes the table,
opens the table’s Database in exclusive mode, makes
the Table descriptor’s pFldDesc and pecrFldOp fields
point to our arrays, sets the szTblName and szTblType
fields and finally calls the DbiDoRestructure function
passing the address of our table descriptor. In the
finally section (of the try..finally block), the data-
base is closed, the allocated memory freed and the
table is re-opened, if it was open before restructuring.

As you can see, the unit contains conditional com-
piler directives, in order to be compiled in either 16- or
32-bit mode. Depending on the Delphi version, it uses
the DBRUtl16.dcu or the DBRUtl32.dcu files, whose

source code I can’t distribute for the reason above
explained.

On this month’s disk you will find the file
DBRESTR.ZIP that contains a demo application
DBRTest which is a test program for the DBRestr unit. It
opens a Paradox table, DBRestr.db, located in the pro-
gram directory, which initially contains a string field
and an integer one. Pressing the Restructure button
opens another form with a listbox containing the
table’s field names. The menu items allow adding (to
the end), inserting, renaming or deleting fields. In the
first two cases, a third form is displayed to request
name and type of the new field (in this example only
30-chars strings and integers are allowed). The
changes are immediately displayed in the list box, as
well as in the main form’s DBGrid. Moving fields is also
supported by dragging a listbox item to the desired
position. In the listbox DragDrop event I force the selec-
tion of the choosen item by simulating a mouse click
via the Perform method (see the Brian Long’s item
about dragging on a DBGrid in the Issue 5 Clinic). Finally,
the listbox contents are refreshed, in a BeginUpdate ...
EndUpdate block, in order to make all changes in one
step (Listing 4).

There are still things to do... For my present needs,
the Restructure procedure has enough features, how-
ever a more comprehensive version could include ref-
erential integrity, validation checks, re-indexing, etc.
But for now I have had enough restructuring . Maybe
someday...

Contributed by Roberto De Marini,
rdemari@poboxes.com

On our Web site:
http://www.itecuk.com
Here’s some of what you can find:

➤ Updated program and data files for TDMAid,
the Article Index Database.

➤ TDMaid Online for immediate access!

➤ The Delphi Magazine Book Review Database.

➤ Is your companion disk dead? The source and
example files from the articles for the last few
issues are here for download.*

➤ Details of what’s in the next issue.

➤ Back issues: contents and availability.

➤ Sample articles from back issues.

➤ Links to other great Delphi sites.

	Win32 API error codes
	Two ‘Gotchas’
	Update: Starting Projects Via DPR
	Update: Navigation With Cursor Keys (Issue 26)
	Const Parameters
	Colours Property Editor
	FilteredComponent Property Editor
	DbiDoRestructure Wrapper
	On our Web site:

